skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mavromatis, Ilias G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A technique based on the Wiener path integral (WPI) is developed for determining the stochastic response of diverse nonlinear systems with fractional derivative elements. Specifically, a reduced-order WPI formulation is proposed, which can be construed as an approximation-free dimension reduction approach that renders the associated computational cost independent of the total number of stochastic dimensions of the problem. In fact, the herein developed technique can determine, directly, any lower-dimensional joint response probability density function corresponding to a subset only of the response vector components. This is done by utilizing an appropriate combination of fixed and free boundary conditions in the related variational, functional minimization, problem. Notably, the reduced-order WPI formulation is particularly advantageous for problems where the interest lies in few only specific degrees-of-freedom whose stochastic response is critical for the design and optimization of the overall system. An indicative numerical example is considered pertaining to a stochastically excited tuned mass-damper-inerter nonlinear system with a fractional derivative element. Comparisons with relevant Monte Carlo simulation data demonstrate the accuracy and computational efficiency of the technique. 
    more » « less